A033 178

UNCLASSIFIED

END
___77

CALIFORNIA UNIV LOS ANGELES DEPT OF MATHEMATICS F/76 12/1

ON CHARACTERIZATIONS AND INTEGRALS OF GENERALIZED NUMERICAL RAN==ETC(U)

OCT 76 M GOLDBERG: E G STRAUS AF-AFOSR-SD“&-?G
AFOSR=TR=76=1250




M o B e T o Lol WY . o 454 Bl S 4 Cpl s 2o & ot S BRI 1D

i e i s i i oo s i i

¥

BFOSR - TR 701200y

)

I7ATIONS AND INTEGRALS OF GENERALIZED NUMERICAL RANGES

by f :

Moshe Goldberg and E. G. Straus*

Department of Mathematics '

University of California, Los Angeles

A e

.

AW

ADAOD33178

ABSTRACT. ILet c¢ = (71,---,7n) be given. The

3 generalized numerical range of an n X n matrix A,

associated with c, is the set WC(A) = (T 7j(ij,xj)}

where (xl, .- -,xn) varies over orthonormal systems

in Cn. Characterizations of this range, for real

c, are given. Next, we study integrals of the form

! WC(A)dLL(c) where (c) is a measure defined on a D D Cf« ;,
domain in TR'. The above characterizations are used P P

to study the inclusion relation [ Wc(A)du(c) c ch'(A):' pEc 10 1976 ’

i
i We determine those A, for which this inclusion holds :; ¥ _:_1
for all n X n matrices A. Such relations lead to

more elementary ones, when the integral reduces to a
finite linear combination of ranges. In particular, we
: J obtain the inclusion relations of the form wc(A) = ch,(A)

which hold for all A.
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1. Introduction. The generalized numerical range of an n X n

complex matrix A, associated with a fixed vector c¢ = (71,---,7n) € cn,

is the set of complex numbers

n
(l-l) wc = W(,yl,___’yn)(A) = {’: 7J.(ij.vxj) : (x )"-:xn) € An}:

=1
where A.n is the set of all orthonormal n-tuples of vectors in cn. We
call Wc a generalized range since for ¢ = (1,0,-..,0) it reduces to the

classical range

W(A) = {(Ax,x) : |jx|| = 1}

It is clear from (1.1) that wc remains invariant under permutations

of the components of ¢; that is, Wc depends on the unordered set

{71,---,7n} rather than on c.

Westwick, [1], has shown that if ¢ is convex,

is a real vector then WC
but if c € ¢° with n > 3, then Wc(x) may fail to be convex even for
normal A. For this reason we restrict our attention, in this paper, to
generalized numerical ranges with real coefficients.
Our first purpose is to characterize the sets Wc' In Section 1 we

show that
Wc(A) = {tr(HA) : H € uc} >

where uc is a class of Hermitian matrices depending on c.
In Section 3 we define integrals of the form fﬂ WC(A)du(c) where #
Since

is a domain in R" and W(c) is a nonnegative measure on N.

are convex, such integrals are convex as well, and we may

g2 moeglsl

the gsets W
C

define them in terms of their support functions.




Finally, using the above characterization of wc, we investigate

inclusion relations of the form
(1.2) f Wc(A)du(c) c 'ch,(A) 4 N = constant ,
R

vhich hold, uniformly, for all A € cnxn’ i.e., for all n-~square
matrices. If the measure W(c) is concentrated on a finite number of
vectors ¢, then (1.2) is reduced to inclusion relations involving finite
linear combinations of generalized numerical ranges. Such relations were
considered in earlier works [2, 3].

In particular, for given vectors ¢, c we obtain necessary and

sufficient conditions under which

Wc(A) & ?\Wc, . LA G

2.  Characterization of generalized ranges. For any vector

¢ = (71,---,7n) consider the diagonal matrix
C= diag(c) = dia.g(yl, "‘,7n) ’
and construct the class of matrices
*
U, = conv{UCU : U unitary} ,

where conv denotes the convex hull.

Since we restrict attention to c¢ € R" it is evident that the
elements of uc are Hermitian.

Using ”c we have the following characterization of ranges with

real coefficients.
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THEOREM 1. If c € R® then

W, (A) = (tr(HA) : H €}

Proof. It follows from the definition of wc(A) in (1.1) that

W_(a) = {tr(cU"AU) : U unitary} .
Thus

(2.1) W (A) = (tr((UCU™)A) : U unitary) ,

which implies that

wc(A) c {tr(HA) : H € uc} ;

For the converse inclusion let

L}

1,

*
H=§7\1(U1CU1) ; ?\120 : si*,)\

i

be an arbitrary element of 1, . By the convexity of W_ and by (2.1)
(¢ c

we have

tr(HA) = % )‘1 tr((UiCU;)A) € Wc(A) 5
So,

{tr(HA) : H € ut © WC(A) ;

and the theorem follows.

TR R e

4 We introduce two definitions which lead to another characterization !

of WC(A).

DEFINITION 1. (i) A real vector ¢ = (71,---,7n) is called ordered |

if ‘
)

IR Ry,
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(ii) We say that c, c' satisfy c' <c if there exists a doubly
stochastic matrix S (i.e., a matrix with nonnegative entries wnose
row sums and columns sums equal 1), such that c¢' = Se.

In Theorem 7 of [3] we proved the following.

LEMMA 1. For ordered c¢, c¢' we have c¢' <c¢ if and only if

with equality for £ = n.

DEFINITION 2. Let c € E', and let A, (1 <£<n) be the set of
all orthonormal £-tuples of vectors in cn. We define uc to be the
class of all Hermitian matrices H for which

Y y/
{2.2) ;):l (de,xj) S;]El Tg o \"/(xl""’xz) Efpls B, 0,
with equality for £ = n.
17°77»8, be the standard basis of c®. Note that if £y, = 0

(which is the case assumed in Section 3), then the equality for £ =n in

Let e

2.2 implies that

n
Jfl (Hed,ej) = Z)’j =0 5

ik cacibns ol

SNSRI SR RS

i.e., all members of uc have trace O.

LEMMA 2. If c is ordered then ¥ = ..

Proof. Take a unitary matrix and orthonormal vectors xl,---,xl,

(1 <t shn). Since the vectors yj = U*xj’ j=1,+-+,2, are orthonormal

B s e
e

as well, it is not hard to verify that

) 2
*
(2.3) Jfl (UCU x4,%4) = J:.‘.l (Cypy)) <7+ oo+ 755 o= disgle),

with equality for £ = n. Therefore, if

TR TR R
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is any (Hermitian) matrix in u,» we find by (2.3) that

£ 2
Y (Ex,x,) = T % A(UCULX,x)< B % o
PRI b T i e Be cga v

£ £
= J:‘l 75 s
with equality for £ = n. So, by Definition 2, H € uc’ and consequently
b, © HC.

Conversely, take any H € ﬂc. Since H is Hermitian, it is uni-
tarily similar to a real diagonal matrix, i.e., there exists a unitary

V such that .

(2.4) C' = VHV = atag(y{,-++»7))

1

where we may assume that c' = (7i,---,7é) is ordered. Using

(2.2) and the orthon >rmal vectors x, = Vej’ j=1,---,2, we find

J
that
“ - ke ; ;
% ori= L(cle,e,) = T(VHVe,e,) = T(ix,,x)< T 7, ,
Ml e Lt b e e R

with equality for £ = n. That is, by Lemma 1, c' < c. Hence, there
exists a doubly stochastic matrix S such that c¢' = Sc. Now recall that
doubly stochastic matrices are convex combinations of permutation matrices

P;+ 1In particular S = 7%,%6 P . Thus

o)

(2.5) e'= N APe; A, 30, TA =1,
U€Sn

where Sn is the symmetric group. Since for every B, PUBP; has both

the rows and columns of B permuted according to O, we have

* %
(2.6) diag(PGc) =P dia.g(c)Pc =P CP, .
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So, by (2.5), (2.6),

(2.7) C' = diagle') = 27‘0 diag(P c) = ?7‘0%01’;

From (2.4) and (2.7) we obtain

(2.8) H =1 i

ve'v' = ZAL(VR) ¢ (VB) ] = SA(Uer)) , A 20, BA
a (o)

where UG = VP_ are, of course, unitary. Hence, H € “c’ i.e., Hc clu

o c

and the proof is complete.
Theorem 1 together with Lemma 2 imply a second characterization of

generalized numerical ranges with real coefficients.

THEOREM 2. If c¢ is ordered then

wc(A) = {tr(HA) : H ¢ uc}

Another simple consequence of the last lemma and the convexity of
U, is that for ordered c, ﬁc is convex.
At this point we recall the definition of the k-numerical range,

(1 < k <n), given by Halmos [4, §167], which after a convenient normaliza-

tion becomes
wk(A) = {k tr(PAP) : P = orthogonal projection of rank k}

It can be verified that wk(A) may be written as

k
W (a) = {% le (Axx0) & (xp5-eenx,) € Ak} .

Hence we see that

=

(el+ ves 4 €

wk(A) = wck(A) , with ¢

b L

k
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That is, the k-numerical range is a special case of the generalized
numerical range.

The matrices l{c are those Hermitian matrices which satisfy
k

Definition 2 with c¢ = Using this definition one can show that

ck.

" = {Hermitian H : 0 <H<
k

bl Ll

T s tr(H) =1}
Thus Theorem 2 generalizes the result

W (A) = (tr(HA) : OSHgE T, tr(H) =1} , k=1,---,n ,

of Fillmore and Williams [%, Theorem 1.2].

3. Integrals Qiljgnera_.}ized ranges. In this section we are interested
in linear combinations, or more generally, in integrals of the sets WC(A),
where A 1is arbitrary but fixed, and c¢ varies in some domain of ]Rn .

Iet ¢ = (71,---,7n) be a real vector with 7y = % 75 #0, and

consider the vector b = (Bl, ---,Bn) defined by

e (Eod)

We have EBJ=O and
i ¥ Y
B=diag(b)=diag(c)-;I=C-a-I

So, by Theorem 1,

i

W (8) rtr(UBU'A) : U unitary}

)

ﬁﬂﬂc-%IWA]:U mnuy}=%w)-(§w@n.

dimilhied ] e WA R N i
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This argument suggests that it is convenient to restrict attention

to those vectors c¢ for which 7 = 0. The limitation merely

Lt
involves a translation of the ranges by multiples of the trace, or,
equivalently, the restriction to matrices of trace O.

Since Wc is invariant under permutations of the yj, we may

assume that each vector ¢ in our domain is ordered. Hence, we con-

conical subset ~ of an (n-1)-dimensional subspace of e
We are ready now to study integrals of WC(A) relative to an

arbitrary measure [ on ¢, that is integrals of the form

(3.2) = 3, = [ B wae).

One way of defining the integral in (3.1) is by carrying linear sums,
over partitions of (, to the limit. Alternatively, one realizes
that JM’ being an integral of the convex sets Wc, is a convex set

as well. Hence Ju may be characterized by its support function

(e.g. (2] part V),

u(J ,0) = sup Re(ze_ie

" ]y ey
€
4 J“

In order to evaluate u(Ju,e), we consider the support functions of
our closed convex integrands Wc' We have
u(W ,8) = u(c,0) = max Re(ze'le) y GLoeT
o z €W _

Since u(e,8) is a linear function of ¢ in the sense that

u(7\wc + ?\'wc,,e) = M(c,0) + Nu(e',8) , VAN >0,

we have

RSTTECN P S
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u(J,,,8) = u(fwcdu(C),e) =fu(Wc,9)du(c) =fu(c,6)du(c)

Of course, the measure L may be concentrated at a finite number
of points e € C. In this case the integral Ju reduces to

the finite linear combination

Wley W, (B) + -ov + ule W, (&) .
1 m
Since WAC = ch for scalar A, we shall avoid integration over
proportional vectors of (. This can be achieved by restricting integra-

tion to the domain

8 = {c e (71,”.’71’1)’ 7‘,73, =0, 71 =l} ’

which is the bounded set of all vectors in C with 7y = Tk

il S bl

The above concept of integration can be extended in order to con-

sider the integral

(3.2) LY sf Y, du(e) .
0

B s s

We recall that the integrands Y, are convex sets in the

2
(n"+n~2 real dimensional) space H of Hermitian matrices of trace

e sl

0. It follows that HM is also a convex set in H. Again, the con-

2

i 4 vexity of uc and nu implies that the integral may be defined in

= terms of the support functions of Hc. Here, in analogy to the previous
P |

? | case, the support function of Hc assigns to each point Hl on the

unit sphere of H, the distance from the origin 0 of H to the plane

of support of Bc perpendicular to the direction Bﬁi.

' Having the integrals Jp and uu defined we state our main

‘f‘ result.




R

T T TP T

|
|
|
{

THEOREM 3. Let W be a nonnegative measure on 0, and let

c' £ 0 be an ordered vector with ¥ 7;'5 = 0. Then

(3.3) fﬁ W, (8)aue) < 'ch,(A), WA eC

if and only if A > n(e') or A< f(c') where

71 b sk g
(3.4) n(e') = max f - - du(e) ,
lgfr<n 0 7’1 4+ a4 + 7Z
Yy + see +
(3.1b) ety - min [ L L au(e) .
Yelew . Tyt RN T

Proof. In the proof of Lemma 7 of [3] we have shown that if c' £ 0

with 3 73 = 0, then

(330 R e B R0, ey <l B dyceeinel

This establishes that 1, of (3.4) are well defined and since K is
a nonnegative measure we see that >0, 4 < 0.

Next we show that A > n(c') or A< €(c') imply (3.3). For this
purpose we use the definition of uu, Theorem 2, and the linearity of the
trace to evaluate the set on the left of (3.3):

(3.6) f

: WC(A)d,LL(c) =_/:q {tr(HA) : H € uc}du(c)
= {tr(HA) : H <-:\/:Q Hcd.u(c)} = {tr(HA) : H € uu} :

Now choose A with A > n(e'). Sinee A >0, the vector Ac'

remains ordered. Hence, by Theorem 2,

(3.7) ch'(A) = w}c'(A) = {tr(HA) : H € LN

B NAL D el e o L oo L
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From (3.6), (3.7) we see that in order to prove (3.3) it suffices to

show that

(3.8) LT N

Thus, let Hy be a matrix in uu. Then by (3.2), there exist elements

H euc for all c € 0, such that

(o
H, =fn Hcdu(c) :

The matrices Hc satisfy Definition 2, and siace |L 1is a nonnegative

measure on N, it follows that for £-tuples Xyt tsXy in Ak we have

Y/

y
(39) }-J'(HX,X): E(Hx’x )du(C)Sf (7+"'+7)d“4(c)5£=l:"'
PRRRE S ¥

with equality for £ = n. Since Y, 7.]' =X 75 = 0, the above equality for

: £ = n implies
E n
: (3.10a) % e x)=0=2kE 7,

(a}

For 1< £ <n we use the assumption A > 1 to obtain from (3.9) that
(3.100) 'f‘ Hox.,x.) < (7. + ---+7')f Z13'--'-—.--”1-2-(1“(@ < A7 + .00 +7))

' RN Oy ey Rl Sty LA
By Definition 2, the relations (3.10) mean that Hy € M, ,. Hence, (3.8)
1 holds, and consequently the inclusion in (3.3) follows.
For N < § the situation is slightly different. Consider the

"

vector c' = (-7;1,---,-71"). Since c¢' is ordered, c" is too. Also,

the condition A < €(c') becomes

b S, 4 Vot ooty
(3.11) -A > -t(e') = -min f 2 - 5 dp(e) = max f 5 ',6
0

1 t Ylaiiin
o "n" et 1<i<n 2 4
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Hence, by the previous part of the proof, we have that
G2 [ W e W LW L WA, .

But -Ac" is merely a reordering of Ac'. Thus, the set on the right

of (3.12) satisfies

M (A) =W (A) =W, (A) =W (A),
c c

_‘}\cll )\c'

and we obtain (3.3).
To complete the proof we have to show that if { < A< 1, then (3.3)
does not hold for some A € chn' First assume 0 < N < n. That is,

for some £, 1< £ <n,
(3.13) Myg + ooe 4+ 75) <J; (ry + -+ + 7pdule) .

Consider the matrix Az = Izla On-ﬂ' A simple computation shows that
for an ordered vector ¢, the range wc(Az) is a real interval with
right end-point 71 4 siey Yy Then, the left side of (3.3) represents

a real interval with right end-point

fm(vl + oo+ 7 )du(e)

which, by (3.13), exceeds the right end-point ?\(7i 4. 55x 4 9} of Wy oo

Finally, if §(ec') <« A< 0, then (3.11) implies that 0 < -A < n{e")

where c" = (-7!'

n,---,-yi). Thus by the above example the inclusion

| J P pae) < wny) = e, ()

fails to hold, and the theorem follows.

1; We remember of course, that we restricted integration to the domain

© for convenience only. Therefore, if so desired, W(c) can be

:
i
5

!
f

i
|

'

i

s

!
T
i

s

!

!




extended to the domain (, and Theorem 3 remains valid.

If | 1is concentrated at a finite number of vectors Cys°°"sC €@, :
then Theorem 3 characterizes all A for which
m
) > u(ci)wc.(A) e 7\wc,(A) s WA EC .
i=1 i
A result of this type is given in Theorem 1 of [2].
Of particular interest is the case where |. 1is concentrated at a
single vector c" € ¢. That is,
f W (A)aule) =w (a),
- ¢
and 1,§ of (3.13) are given now by

" n " "

: AR IRTE ; g e 4 7y

n(e') = max E Tl €(e') = min L
i<ien €1 Ll i<tecn /1 %

Thus, from Theorem 3 we conclude,

COROLIARY. Let c¢' #0 and c¢" be ordered vectors with ¥ 75=" 73' = 0.

Then
Wc,,(A) (— 7\wc. )y AR

if and only if A > n(c') or A< {(c') where 1,0 are given in (3.14).

This result was proved differently in Theorem 8 of [3].
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